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Abstract

We propose a method of data reduction that improves the predictions of correlations obtained from heat exchanger

measurements. If we define an ideal heat exchanger on the basis of commonly made assumptions, the two heat transfer

correlations corresponding to both sides of the heat transfer surface can be simultaneously determined. A local re-

gression analysis, however, gives a multiplicity of possible correlations corresponding to the given data. The best

correlations are obtained from this set by using a global regression procedure. Three methods are evaluated for this

purpose: genetic algorithms, simulated annealing and interval analysis. All three perform well, with some differences

in accuracy and CPU time. The predictions are further improved by correlating the error that is introduced by the

assumptions of the ideal heat exchanger. The heat rate predictions are then improved considerably, giving a good idea

of the extent to which these assumptions degrade them.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Compact heat exchangers are common in industry,

and for design purposes it is necessary to be able to

predict their performance. This calculation is difficult

from a first-principles perspective due to complexities

arising from geometry, turbulence, and property de-

pendence on temperatures. As a result, in practice most

predictions are based on correlations that have been

derived from experiments carried out on a specific heat

exchanger [1]. Measurements are usually of flow rates

and inlet and outlet temperatures of the fluids. From

these the heat rate can be determined. Experimental data

are used to obtain non-dimensional correlations which

effectively compact the test results so that the user can

employ these correlations to predict the heat rate of the

same heat exchanger under different operating condi-

tions and fluids.

1.1. Ideal heat exchanger formulation

For the present discussion, consider a heat exchanger

with two fluids A and B in single-phase flow, both ge-

ometry and fluids being considered fixed. To keep the

heat rate non-negative we will assume that A and B are

the hot and cold fluids respectively. We will refer to the

analysis in this section as corresponding to an ideal heat

exchanger. It basically reflects current practice and

commonly made assumptions. The word ideal is used in

the same sense as in ideal gas or ideal flow: the gas or the

flow is real but the analysis has certain assumptions that

enable simplifications.

The heat rate in a heat exchanger, _QQ, is usually
written as

_QQ ¼ Uð _mmA; _mmBÞADTmðT inA ; T inB ; T outA ; T outB Þ ð1Þ

where U is the overall heat transfer coefficient, _mmA and
_mmB are the mass flow rates of the two fluids, A is a

characteristic heat transfer area, DTm is a characteristic
temperature difference between the two fluids, T inA and

T inB are the inlet temperatures of the two fluids, and T outA

and T outB are their outlet temperatures (they are to be
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interpreted as bulk temperatures). The equation is based

on the entire heat exchanger being considered as a

thermodynamic system, so that U and DTm are not local
quantities. DTm in this equation must be defined for a
given configuration in terms of the inlet and outlet

temperatures, and is usually derived from analyses

which have their own simplifications and assumptions

[2].

The heat rate is also related to the inlet and outlet

bulk temperatures by

_QQ ¼ _mmAcAðT inA � T outA Þ ¼ _mmBcBðT outB � T inB Þ ð2Þ

where cA and cB are the specific heats of the two fluids at
constant pressure. This relation is exact if the specific

heats are constant (or an appropriate temperature-

weighted average is used), and if there is no heat ex-

change other than between the fluids.

On invoking the concept of a thermal resistance, we

can write

1

UA
¼ 1

hAð _mmAÞAA
þ 1

hBð _mmBÞAB
ð3Þ

where hA and hB are the convective heat transfer coeffi-
cients on their respective sides of the wall, and AA and AB
are the corresponding heat transfer areas. The transverse

thermal resistance of the wall due to conduction is

usually negligible; conduction along it and between

tubes has also been neglected [3]. Implicit in Eq. (3) is

the assumption that the convective heat rate on one side

of the tube wall is proportional to the difference between

the bulk temperature of the fluid and the temperature of

the wall. The thermal resistances on either side of the

wall, ðhAAAÞ�1 and ðhBABÞ�1, are thus assumed inde-
pendent of the flow and temperature distributions on the

other side. The sum in Eq. (3) comes from assuming that

an identifiable, though not necessarily measurable, wall

temperature exists. If all the quantities involved are as-

sumed independent of position, then this equation is also

valid in an overall sense.

From an experimental standpoint, Eq. (1) enables the

total thermal resistance ðUAÞ�1 to be determined from
mass flow rate and bulk temperature measurements. Eq.

(3) tells us that, if the thermal resistance of one side is

assumed or known, that of the other can be calculated.

This procedure can be repeated for different flow rates.

Assuming property values at a reference temperature in

each stream, T rA and T rB, the heat transfer coefficients
obtained can be converted to the non-dimensional form

of a Nusselt number, Stanton number or Colburn

j-factor. Finally, these can be correlated using regression
analysis as a function of the corresponding Reynolds

number, Prandtl number, or other non-dimensional

parameters such as geometry that may have been varied.

Thus only one correlation is obtained, that for the fluid

on the other side being previously known in some

manner or assumed. It must be emphasized that if the

wall temperature could be directly measured, the ther-

mal resistances and hence heat transfer coefficients on

both sides could be independently determined from

Nomenclature

A heat transfer area (m2)

Ar area ratio

c specific heat at constant pressure (J/kgK)

f objective function

h heat transfer coefficient (W/m2 K)

j Colburn j-factor
M population in GA

mA;mB; nA; nB correlation constants in Eq. (4)

_mm mass flow rate (kg/s)

N number of experimental data sets

Nu Nusselt number

nb number of bits in GA

n1; n2; n3; n4 correlation constants in Eq. (8)
Pr Prandtl number

pc probability of crossover in GA

pm probability of mutation in GA
_QQ heat transfer rate between fluids (W)
_QQI ideal prediction of _QQ (W)
R normalized Reynolds number

Re Reynolds number

S variance of error

S mean value of S for several runs
T fluid bulk temperature (�C)
T fluid mean bulk temperature (�C)
T r reference temperature (�C)
DTm characteristic temperature difference (�C)
T � temperature-like parameter in SA

U overall heat transfer coefficient (W/m2 K)

Greek symbols

� error in ideal correlation

h normalized temperature

r standard deviation

Subscripts and superscripts

A, B fluids A and B

e experimental value

in inlet

out outlet

p predicted value
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experiments. However, in most heat exchanger config-

urations with internal and/or external fins it is difficult to

find or specify a single location where the wall temper-

ature should be measured.

1.2. Data analysis

Though other functional forms can be easily con-

sidered, let us for simplicity write power laws to corre-

late the Nusselt and Reynolds numbers on both sides of

the heat exchanger to illustrate the data analysis process.

Thus

NuA ¼ nARe
mA
A and NuB ¼ nBRe

mB
B : ð4Þ

Other parameters like the fluid properties or geometrical

factors are frequently included in the same way. The

unknown constants are determined from experimental

data using regression. The objective of the regression

procedure is to find the values of the unknowns, like nA,
mA, nB and mB in the equations above, that will minimize
the variance of the error between the predictions of the

correlations and the experimental data.

Wilson, in a pioneering paper in 1915 [4], proposed a

graphical method to carry out a two-unknown regres-

sion analysis by reducing the equation to a straight line

and then graphically determining its intercept and slope.

The method has been extended to more variables by

iterating on two at a time [5,6]. Though the Wilson plot

method has been frequently used in the past [7–10],

modern computational capabilities and numerical opti-

mization techniques make it somewhat obsolete and we

will not consider it any further.

Current practice in the processing of heat exchanger

data can be grouped by the number of unknown con-

stants that are determined from the regression analysis.

In simple cases this can be done analytically, but in

general the procedure is numerical.

• Two unknowns: There are many ways in which exper-

iments can be designed or assumptions made such

that the regression reduces to two unknowns. (i) If

the thermal resistance on one side is negligible com-

pared to that on the other side because of high heat

transfer coefficients, either due to condensation or

large flow rates of a liquid [1,11], we are left with just

two unknowns in Eq. (4). Khartabil et al. [6] cre-

atively used this method on data sets that were ob-

tained from different experiments in which first one

side then the other had a negligible thermal resistance

to get correlations for both sides. (ii) Sometimes the

thermal resistance on one side is assumed to be a con-

stant which may either be known [12] or unknown

[4,7–9]. (iii) Others have assumed that the thermal re-

sistance on one side is variable but known through

some pre-determined correlation [13,14].

• Three unknowns: If one of the unknowns in Eq. (4) is

assumed known, regression can be carried out for the

other three. This was graphically and iteratively done

by Briggs and Young [5] by cyclically taking two un-

knowns at a time. Khartabil and Christensen [15], on

the other hand, used numerical analysis to solve the

three-unknown set of algebraic equations. Kayansa-

yan [16] also had three unknowns, some of them

being from geometrical parameters.

• Four unknowns: Gray and Webb [17] and Kim et al.

[18] used numerical methods to find four constants,

two of which were for geometrical parameters. The

thermal resistance on only one side of the tube wall

was included in the correlation.

• Five unknowns: Abu Madi et al. [19] had five un-

knowns with two for the flow and three for geomet-

rical parameters. Again only one side was considered.

The methods outlined above have several drawbacks

that prevent improvements in the accuracy of the pre-

dictions in spite of better measurement techniques: (i)

Special experimental facilities with condensing or rapid

flows are needed which may not be easily available to the

manufacturer, or which may not be worth setting up

since the device is not normally expected to be used in

that fashion or with those fluids. (ii) Complete correla-

tions for both sides of the heat exchanger are not

simultaneously obtained under normal operating con-

ditions when both thermal resistances are finite and

unknown. (iii) There will be errors resulting from the

ideal heat exchanger assumptions inherent in Eqs. (1)

and (3).

These factors, in addition to the specific nature of the

correlation functions assumed for regression and ex-

perimental data compression, may put a limitation on

the improvement of predictions. It would thus be better

if heat transfer correlations on both sides of the tube

were determined simultaneously from experimental data

obtained under normal conditions. This is what we

propose to do. We will show that this will lead to the

need for global, as opposed to local, regression, and we

will apply common global optimization methods to ex-

perimental data. Finally, the effect of the ideal heat ex-

changer assumptions made in getting these correlations

will be evaluated.

2. Experimental data

Data for the analyses carried out here are from the

following two different sources.

(a) Heat exchanger 1 (HX1): These are the results of

tests on a single-phase, single-row plate-fin-tube heat

exchanger carried out at the University of Notre Dame.

The heat exchanger had a nominal size of 457 mm�
610 mm with a single-row circuit of 12 tubes connected
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by bends. These data were collected as part of previous

work in a test facility described in [20–22]. The fluids

used were air in the over-tube side and hot water within

the tubes. Two hundred and fifty nine tests with different

air and water flow rates and water inlet temperatures

were carried out. The measured variables were the mass

flow rates, and the inlet and outlet temperatures of the

two fluids.

From a heat balance for the transverse flow of fluid B

over a long pipe through which A is flowing, we can

show that

_QQ ¼ _mmAcA T inA
�

� TB
�
1

�
� exp

�
� UA

_mmAcA

��
ð5Þ

where the assumptions of Section 1.1 have been used. If

TB, the outside temperature, is approximated by TB ¼
T inB , we get

DTm ¼ T inA � T outA

ln ðT inA � T inB Þ=ðT outA � T inB Þ½ 	 : ð6Þ

This characteristic temperature difference was used in

Eq. (1) to calculate U , with fluids A and B being water
and air, respectively. Properties for each fluid were as-

sumed to be at the average temperature between its inlet

and outlet.

(b) Heat exchanger 2 (HX2): This was a multirow

multicolumn fin-tube heat exchanger with a nominal size

of 127 mm� 305 mm for which considerable data were
collected and reported by McQuiston [23]. Air was the

over-tube and water the in-tube fluid. The fin spacings

were also varied. The focus of the study was the air-side

heat transfer, which was reported as j-factors, and
therefore high Reynolds number turbulent flow was

used in the water side to make the thermal resistance on

that side small. Though the data included dropwise and

film condensation, only the dry surface measurements

will be considered here.

3. Local and global regression

The heat transfer coefficients, hA and hB, from Eq. (4)
can be substituted into Eq. (3). To find the unknowns

nA, mA, nB and mB from the experimental data, the vari-
ance between the experimental and predicted values of

the total thermal resistance, ðU e
i AÞ

�1
and ðUp

i AÞ
�1
, for

i ¼ 1; . . . ;N , must be minimized. This is equivalent to
minimizing

SU ðnA;mA; nB;mBÞ ¼
1

N

XN
i¼1

1

U e
i

�
� 1

Up
i

�2
: ð7Þ

3.1. Local regression

To see why global rather than local regression is

necessary, we apply the latter to the data from HX1. The

proposed correlations are the first Eq. (4) multiplied by

Pr0:3A and the second by Pr1=3B . A gradient-based method
[24] is used for minimization. The results show a mul-

tiplicity of local minima stemming from the non-

linearity of SU with respect to its arguments. Although
some non-linear relations may be transformed into a

linear form (e.g. by taking logarithms), the function SU
in Eq. (7) is not linearizable.

As an example, two of the several local minima found

for nA, mA, nB and mB are 0.102, 0.591, 0.030, 0.787 and
0.091, 0.626, 0.092, 0.631, respectively. The variances for

these minima are within 17.9% of each other. Though

the heat rate predictions are similar, the thermal resis-

tance predictions of the two correlations differ by 12.5%

on the air side and 10–40% in the water side [21]. This

indicates one of the difficulties associated with decou-

pling the thermal resistances on the two sides that is a

consequence of the ideal heat exchanger assumptions.

This also raises the question as to which of the local

minima is the ‘‘correct’’ one. In other cases of regression,

as will be shown later for HX2, a similar problem arises

even when the correlation sought is only on one side of

the tube wall. A possible answer is that we should use

the correlation that provides the smallest value of the

variance of the error over the entire range of available

data, i.e. the global minimum.

3.2. Global regression

The search for the global minimum can be carried

out by means of recently developed global optimization

techniques such as genetic algorithms (GA), simulated

annealing (SA), and interval methods (IMs). We briefly

describe the methods here, though the details are in [25]

and in the references cited. In our case the objective

function f below for which a global extremum is being

sought is a variance.

3.2.1. Genetic algorithms

GAs are stochastic, evolutionary algorithms that are

based on the Darwinian principle of natural selection

wherein the fittest members of a species survive and are

favored to produce offspring [26]. The procedure is

summarized as follows. A solution of four unknowns is

encoded as a binary string of length nb. An initial pop-
ulation of M strings is chosen and the objective function

f is evaluated for each one of these. Pairs of parents are
randomly selected but favoring those with the better

values of f . Offspring are produced from these parents

through the so-called processes of crossover (parts of

binary strings switched between parents with probability
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pc) and mutation (random digit changed with proba-

bility pm). Conserving the best member of the previous
generation, a new population ofM members is obtained.

The process is repeated until some criterion based on

convergence or the maximum number of generations is

reached.

3.2.2. Simulated annealing

SA is inspired by the molecular calculation of the

cooling of a physical system in which random agitation is

used to avoid entrapment in local extrema [27]. A start-

ing point in the space of unknowns is randomly selected

on which a cycle of randommoves along each coordinate

direction is performed. The new point is accepted if it

gives a better value of f . If it is worse, it is accepted only
with a certain probability expð�Df =T �Þ, where Df is the
change in value of f and T � is a dynamic parameter that

is analogous to the temperature of a system being cooled

[28]. The process is repeated with decreasing T � and step

size until convergence within a certain tolerance is

reached. The procedure in [29] is followed here.

3.2.3. Interval methods

In contrast to the other two methods, the IM is a

deterministic technique that is capable of finding the

global extremum of an explicitly known f [30]. IMs use
interval analysis which is based on an arithmetic of in-

tervals. This enables some aspects of a function within a

finite interval to be predicted just from calculations at its

end points. A useful extension for optimization is the

interval-Newton method. Given a non-linear system of

equations with a finite number of roots within some

interval, the method is capable of enclosing them be-

tween narrow bounds. The search for the global extre-

mum of f begins with an interval which is divided into
smaller intervals, each one of which is checked for the

global extremum. If an interval includes the extremum, a

new one is found using an interval Gauss elimination

or a Gauss–Seidel-like technique. The procedure is

repeated until the global extremum is bounded by a

sufficiently narrow interval. Here we use a multidimen-

sional extension [31] of the algorithm in [32].

4. Heat exchanger applications

To illustrate the global regression approach, we use

data from HX1 and HX2. All the numerical computa-

tions were done using MATLAB so that the CPU times

reported must be viewed in that context.

4.1. HX1

We first use GAs to find the four correlation con-

stants of Eq. (4). Choosing M ¼ 30 and nb ¼ 30 encodes

them into a string of 120 bits providing a resolution of

1:4� 10�9. The search domain is chosen to be (0,1.5),
with pc ¼ 1 and pm ¼ 0:03. Due to the stochastic nature
of the method, slightly different results are obtained each

time the code is run. An average value of the variance

over 10 runs, SU , as well as its standard deviation, rU ,

are also determined. Three hundred and seventy three

iterations were needed to achieve the global optimum.

For SA, we take T � ¼ 800 initially, and the Kirkpatrick
et al. [33] recommendation of a 10% decrease every time

is used.

The errors obtained from the three methods are

shown in Fig. 1 as a function of the heat rate. The same

results are quantitatively summarized in Table 1. Shown

are the values of the four constants nA, mA, nB and mB,
the variance SU , the CPU time for the best solution, the
average SU over 10 different runs, the rms of that rU ,

the rms percentage errors in U�1 and _QQ predicted by the
correlations. It can be seen that all three methods pro-

vide values of SU within 5% of each other, both IM and

SA being equally accurate. On the other hand, the dif-

ferences in SU between GA- and SA-based correlations
with respect to the IM-based correlation, which gives the

least value, are 11% and 1% respectively. The reason for

this is the larger variability of the GA every time it is run

as compared to that of the SA. Since the IM is a de-

terministic method rU ¼ 0. The results of the correlation
developed by Zhao [22] using local regression and

modified in [20], are also shown in the table for com-

parison. The global regression methods are much better

with percentage errors confined to less than 3.8% and

3% in U�1 and _QQ respectively.
The IM is seen to give the best results. A comparison

of _QQ between the correlation obtained from this method
and experiments is shown in Fig. 2. The straight line

represents the equality between the predictions and the

experimental measurements.

4.2. HX2

A second demonstration of the global optimization

analysis is with the data of HX2. The correlation pro-

posed in [12] is

j ¼ n1 þ n2Re�n3A�n4
r ð8Þ

where Ar is a geometrical parameter representing an area
ratio, and n1, n2, n3 and n4 are constants. A slightly

different correlation was reported by Gray and Webb

[17] using data from [23] and other sources. The variance

of the error between predictions and experiments of the

j-factor is

Sj ¼
1

N

XN
i¼1

jei
�

� jpi
�2 ð9Þ
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where jei are the experimental measurements, and jpi are
the predicted values, for i ¼ 1; . . . ;N . It is found that Sj
has multiple local minima [34]. The multiplicity of local

minima of the error surface comes from the mathemat-

ical form of the correlating function assumed, Eq. (8),

for which the non-linear function Sj is not linearizable,
rather than from having to determine the correlations on

both sides of the tube as we saw for HX1.

As before, we search for the least among the various

local minima of Sj. The search domain is chosen to be
ð�0:6; 0:6Þ for all the unknowns. We use first the GA
choosing M ¼ 40, nb ¼ 30, pc ¼ 1 and pm ¼ 0:03. The
best set of unknowns is found after 2959 generations. In

SA we take T � ¼ 1500 initially with a reduction of 15%
every temperature adjustment. The tolerance is 10�9.

The number of cycles before temperature and step-

change adjustments is 40. The number of iterations

needed to achieve the global optimum is found to be

236. In the IM, the tolerance for enclosing the solutions

is also set to 10�9.

The error is shown in Fig. 3 as a function of the j-
factor. The results are quantitatively summarized in

Table 2. Again, the GA-based method is the most

variable and the IM the most accurate. Fig. 4 shows

comparisons of the j-factors between experiment and
predictions using the IM. The table and this figure also

show the results of [12,17]. All three global correlations

are better than their published counterparts. Both IM-

and SA-based correlations are almost equally accurate,

with the GA-based correlation being very close.

5. Non-ideal corrections

So far we have considered ideal heat exchangers for

which the assumptions in Section 1.1 hold. To summa-

rize, the necessary and sufficient conditions for a heat

exchanger analysis to be ideal are (i) the temperatures

measured are the bulk temperatures; (ii) Newton�s law of
cooling applies and the resulting heat transfer coeffi-

Fig. 1. Errors in heat rate predictions for HX1 with ideal correlations obtained by GA (
), SA (/) and IM (þ).

Table 1

Comparison of correlations for HX1

nA �102 mA nB mB SU �106 CPU (h) SU �106 rU �109 U�1 (%) _QQ (%)

[20,22] 1.83 0.752 0.1368 0.585 – – – – 21.4 9.16

GA 2.49 0.814 0.121 0.557 5.78 2 6.19 539 3.79 2.96

SA 3.03 0.785 0.102 0.592 5.49 5 5.49 3.07 3.64 2.87

IM 3.04 0.785 0.102 0.592 5.49 120 5.49 0.0 3.63 2.87
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cients are independent of location; (iii) the heat transfer

coefficients are independent of temperature differences

and hence of each other; (iv) a measurable characteristic

temperature difference between the two fluids that is

independent of flow rates exists. These conditions are

only approximate in real heat exchangers, largely be-

cause additional physics which may play an important

role in the performance are not included. As a conse-

quence we may have effects like local non-uniformities in

the heat transfer process, flow maldistributions, tem-

perature-dependent properties, and conduction and

buoyancy effects. In this section we correlate the errors

Fig. 3. Errors in heat rate predictions for HX2 with ideal correlations obtained by GA (
), SA (/) and IM (þ).

Fig. 2. Experimental vs. predicted heat rates for HX1 by the IM-based ideal correlation. Straight line is the perfect prediction.
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resulting from an ideal analysis to show that the physics

missing is real, and is not simply a result of experimental

inadequacies.

For this purpose, let us write

_QQ ¼ _QQIð1þ �Þ ð10Þ

where _QQI is the heat rate from an ideal analysis and

� ¼ �ð _mmA; _mmB; T inA ; T inB Þ ð11Þ

Let us see if there is a pattern to � or if it is completely
random. To do this we find a correlation for � as de-
termined from the experimental data for HX1 and the

corresponding prediction of the IM since that is the

most accurate. The variance of the error in � is

S� ¼
1

N

XN
i¼1

�eð � �pÞ2 ð12Þ

where �e and �p (i ¼ 1; . . . ;N ) are from experiments and
predictions, respectively.

If � were due only to random error, it would not

correlate with the mass flow rates or temperatures.

However

�p ¼ �0:099þ 0:19 1
"

þ exp 3:56

(

� 2:92

1þ exp 1� 4:83RA þ 1:22RB þ 2:77hinA � 12:72hinB
� �

� 2:09

1þ exp 5:3þ 8:12RA � 13:19hinA þ 15:01hinB
� �

� 5:29

1þ exp 1:84RA þ 2:94hinA � 0:58hinB
� �

þ 8:3

1þ exp 1:74þ 1:4RA þ 8:74hinA � 3:02hinB
� �

)#�1

ð13Þ

Table 2

Comparison of correlations for HX2

n1 �103 n2 �105 n3 n4 Sj �107 CPU (h) Sj �107 rj �108 j (%) _QQ (%)

[12] 1.4 26,180 0.4 0.15 – – – – 14.6 6.07

[17] – – – – – – – – 11.6 4.95

GA 17.9 �16.8 �0.456 �0.138 5.41 1.4 9.27 40.8 6.35 2.64

SA 16.9 �6.52 �0.552 �0.160 5.32 9 6.12 4.91 6.23 2.62

IM 16.7 �5.43 �0.570 �0.166 5.32 198 5.32 0.0 6.21 2.62

Fig. 4. Experimental vs. predicted heat transfer rates for HX2 by the IM-based ideal correlation (þ). Also shown are the predictions of
[12] (/) and [17] (
). Straight line is the perfect prediction.
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works well. Though this was determined mostly by trial

and error and a more compact correlation could possibly

have been found, it shows that there is a pattern in �. A
bias error in the measurements themselves would, of

course, behave like true values. The Reynolds number

and temperature in the equation have been normalized by

RA ¼ ReA � ReAjmin
ReAjmax � ReAjmin

; RB ¼ ReB � ReBjmin
ReBjmax � ReBjmin

ð14Þ

hinA ¼ T inA � T inA jmin
T inA jmax � T inA jmin

; hinB ¼ T inB � T inB jmin
T inB jmax � T inB jmin

ð15Þ

Fig. 5. Experimental vs. predicted � for HX1. Straight line is the perfect prediction.

Fig. 6. Errors in heat rate predictions for HX1 including correction for non-ideal effects.
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where the subscripts max and min stand for the maxi-

mum and minimum experimental values in the data sets

for each one of the two fluids.

A comparison between the experimental � and the
prediction of Eq. (13) is shown in Fig. 5. The data are

correlated quite well by the equation, indicating that

the errors in the predictions from correlations derived

using the ideal heat exchanger assumptions cannot all

be attributed to random uncertainties in the experi-

ments.

Now we use Eq. (13) in conjunction with the ideal

correlation to make heat rate predictions that correct for

non-ideal effects. Fig. 6 shows the new errors obtained

this way. The rms error is 1.14% compared to 2.87% for

the ideal analysis. Fig. 7 shows the experimental and

predicted heat rates. The error in heat rate is 45.4 W

compared to 102.7 W for the ideal correlations. Figs. 6

and 7 can be compared to Figs. 1 and 2, respectively.

6. Conclusions

The use of two heat transfer coefficients represented

by non-dimensional correlations, one for the inside and

another for the outside, has been a universally accepted

vehicle for the characterization and prediction of heat

exchanger performance. The simultaneous experimental

determination of both these correlations, however, is not

easy. We have proposed the concept of an ideal heat

exchanger which leads to an analysis that is widely used

but is based on a number of assumptions about the

hydrodynamics, the temperature field and fluid property

variations. The thermal resistances on each side can then

be decoupled from each other. Further assumptions are

also usually made to enable limited information about

the correlations to be determined by regression from

experimental data. Sometimes the regression leads to

multiple local solutions. We have utilized a methodology

based on global regression to avoid this problem. With

this technique we can simultaneously determine the

complete heat transfer correlations for both sides of the

heat transfer surface from experimental data.

All three global techniques considered here, GA, SA

and IM, are suitable for the purpose of finding, through

regression analysis, the optimum values of the correla-

tion constants. Each method has certain advantages

over the others. GAs and SA do not require any gradient

information to carry out the search and hence are faster

than the IMs. GAs have an advantage over SA in being

more efficient in the search as they produce a set of

possible solutions each iteration. However, GAs are not

guaranteed to obtain the global optimum but only the

region in which it is located with high probability. SA,

on the other hand, is probabilistically, though not de-

terministically, guaranteed to find the optimum. The

major virtue of IMs is that, unlike GAs and SA, they

guarantee that the global optimum has been found.

Another advantage is that in the case of a multimodal

function in which several minima exist, it is capable of

finding all of those minima. However, the need for

providing analytic expressions for the functions, gradi-

ents and Hessians are among the limitations of the

Fig. 7. Experimental vs. predicted heat rates for HX1 including correction for non-ideal effects. Straight line is the perfect prediction.
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method. Another drawback is that in higher dimensions

the algorithm is computationally very expensive.

The purpose of defining an ideal device is to enable

the performance of a real machine to be compared to it.

Since the assumptions made for an ideal heat exchanger

hold approximately but not exactly, the behavior of a

real heat exchanger is slightly different. If this non-ideal

behavior is taken into account, the resulting error in

predictions of the heat rates can be further reduced to

about a third. This gives a good idea of the extent to

which the ideal assumptions degrade the predictions and

indicates what must be done to improve them.
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